A Study on Systems of Variable-Coefficient Singular Parabolic Partial Differential Equations
نویسندگان
چکیده
This paper reflects the implementation of homotopy perturbation method (HPM) on the re-formulated systems of fourth-order parabolic partial differential equations. Numerical results explicitly reveal the complete reliability of the proposed algorithm.
منابع مشابه
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملHomotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients
In this paper, we present the exact solutions of the partial differential equations in different dimensions with variable coefficients by using the homotopy perturbation method. The feature of this method is its flexibility and ability to solve parabolic-like equations and hyperbolic-like equations without the calculation of complicated Adomian polynomials or unrealistic nonlinear assumptions. ...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کامل